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Motivation

e How to understand an open orbit? Especially for its asymptotic behaviors! Limit
set 1s one of best to characterize these asymptotic behaviors.

o Limit set is defined for better knowing asymptotic behavior of an open orbit.
However, its essential and unexpected link to Lyapunov method has been found. So
limit set goes beyond its original objective to find its extremely important
application in advanced Lyapunov theory.

e C(Classical Lyapunov theory needs that Lyapunov function is positive definiteness
and the derivative of Lyapunov function along any trajectory is negative definite.
However, in most cases. like energy function as a Lyapunov function candidate. the
dertvative i1s only semi-positive definite. How to treat this situation? Krasovskii
theorem comes to solve this issue.




Limit Set

Still consider a dynamic system
x'=f(x). (12.1)

Definition 12.1 Let x(7;x,) be a solution of the system (12.1) for 7 [0, =).

1) A point x, €D is an @-limit point of x(z;x,) (or y(x,)) if there exists
{t 20} with 1 — = as n— o such that }Ii_}mmx(r”;xﬂ):xg . o-limit set of
x(t;x,) (or yp(x,))is denotedas Q7(x,).

2) A point x; €D 1is an «-limit point of x(z:x,) (or y(x,)) if there exists

{t 20} with 7 —-o as n-—>w such that limx(7,:x,)=x,. The « -limit
H—0

set of x(7;x,)(or y(x,))1sdenotedas Q (x,).




Example 12.1 If x(#:x))=x,, then Q7 (x,)=Q (x,)={x,}. That 1s, the limit set

of equilibrium is itself.

If x(f:x,) 1s a periodic orbit, then Q7 (x,)=Q (x,)=x(f:x,). That is. the

limit set of a periodic orbit 1s also 1tself. (This 1s why an 1solated closed orbit 1s called
a lmut cycle)

If an equilibrum x =x, is AS (unstable), then the equilibrium pomt is @(«a)
-limit set of its nearby trajectories: If x(7;x,) 1s stable (unstable) limit cycle. then
x(f;x,) 18 @ (e ) -limit set of its nearby trajectories.

Lemma 12.1 If x=x" is an ®-limit point of x(#;x,). then, any point on the

trajectory x(7:x°) 1salsoa @-limitpointof x(z;x,).




Lemma 12.1 If x=x" is an @-limit point of x(7;x,). then. any point on the
trajectory x(7:x") 1salsoa @-limit point of x(z;x,).
Proof. Since x=x" 1s an @-limit point, there exists {r, 20} with / — o as

n—o st limx(z :x,)=x" by definition. Suppose that x(z:x") is any point of
H—»00

x(7: x") . By Group Property (Lemma 11.3). we have

x(t, +rix,) =x(rx(f,:x,))
Then

limx(r+7,; x,)=lmx(r;x(f:x,)) =x(7: im x(7 ;: x,)) = x(7:x7) .
n—>»w n n—»m0 n n—w "

This shows that x(7:x") 1isalsoan @ -limit point.

Remark 12.1 Lemma 12.1 shows that Q7 (x;) consists of whole trajectories of

(12.1). This 1s a very important property for a dynamic system. It 1s not true for
time-varying systems in general. Why? See the proof of Lemma 12.1.




Lemma 12.2

The o («)-limit set Q7 (x,)(Q 7 (x,)) of a trajectory y(x,) is closed subset of
D:
Proof. First, it follows Q7 (x,)c D by Lemma 12.1. To show that Q"(x,) 1s

closed in D. let {p, } Q7 (x,) with gi_ﬂpn:p and show peQ7(x,). Since

p, €Q%(x,). then. for each fixed »>1.3 '} with t” > » as k>« st
limx(1,”:x,) = p,.

Moreover, we may assume that U™ > since otherwise we may choose a

subsequence of ¢ with this increasing property. Then, ii_ﬂx(fi”); x,) = p, 1mplies

that for each » . 3 sufficiently large 7, >0 s.t. for & >T . one has

, 1
(1 x) = p, <.




Let ¢, =t{",depending on n.Then, 7, —> > and by the triangle inequality,

]
[x(t,:x)—pll<lx(,:x)-p, +p, —pHS;HIpn -pll—>0

as n— . Thus, peQ™(x,). Hence, Q7 (x,) isaclosed subsetof D. O

Theorem 12.1 If y(x,) = D 1sbounded forall x, €D, then Q" (x,)(Q (x,))1s

1) nonempty:
2) compact:
3) 1invariant;
4) connected subset of D :

5) x(t:x,)—>Q (x,) as t >» (x(t:x,) > Q (x,) as t —>—-»).
Proof. 1) Since p(x,) 1s bounded, there exists a convergent subsequence
Ix(t,:x,)y(x,)} such that x(f:x,)—>peQ’(x,) as ¢ —>o by the

Bolzano-Weierstrass theorem. So Q" (x.) 1is nonempty.
0 S




2)Forany p, €Q7(x,) with p — p as n— o, we will show that peQ™(x,).
Since p, >p as n—ow_ for Ye>0,3 n,>0 such that

£
—pls=.
1P, ~pl<3

But P e Q%(x,), there exists {f, >0} with 7, —>% as n-—>w such that

g
Ix(t,:x,) => p, HEE, n>>1.
Then.

Ix(t,: %)~ p <] x(t,:x)— p,, [+ Py, —plI< 6. n>>1.
So peQ’(x,). Then, Q7(x,) 1s closed. Since Q7(x,) 1is also bounded by

assumption. Therefore, Q7(x,) 1s compact.




3) Let peQ(x,) and show that x(r:p)eQ’(x,) for all >0 . Since,

peQ’(x,). 3 {t, 20} with r, > as n—>o such that x( :x,) > p as

n — . By the Group property,
x(t+1:x,)=x(t; x(¢ 2 x,)),
where for sufficiently large »>0. #+¢, > 0. By the continuity,
limx(7+17 ;x,)=lmx(7: x(7 . x,))=x(t. p).
n—m n—m

which shows that x(z; p) e Q" (x,) for all r>0. Therefore, Q" (x,) 1s mnvariant

with respect to the flow x, of (12.1).




4) Suppose that Q7 (x,) is not connected by contradiction. Then, there exist two

non-empty. disjoint, closed sets 4 and B suchthat Q" (x,)=A4UB.

Let d= %{nfBHx—yH:-»-O. Since the points of 4 and B are @-limit point
x€A, ye

of Q7 (x,),for d >0, there exists arbitrarily large 7 >0 such that

d(x(f:x,), 4) < % and d(x(t:x,).B)< g .

Let g(f)=d(x(t;x,). A). Since g(¢) 1s a continuous function, then, 3 7, > = s.t
d
d(x(t,.x,). 4)= B forall n>0.
Since x(f,:x,)C K. 3 a subsequence converging to p Q" (x,). So it follows that
d d d .
d(p. A):E . But d(p.B)=d(A4.B)—d(p. A) :d_E =7 which 1mplies that

peAd and peB. Then, pQ™(x,). This is a contradiction. Thus, Q7(x,) 1is

connected. Similar to show that Q7 (x,) is connected.




5) suppose that x(#;x,) —>Q"(x,) as t—>o 1s not true. Then, 3 £>0 and
{t, 20} with 1, — o as n— o such that

d(x(t,:x,). Q7 (x,))>¢€.
Since x(f,:x,) =K . there exists a convergent subsequence x(f, :x,)—p as
k— . Then, peQ™(x,) and at the same time, 1t keeps that d(p. Q" (x,))>¢.

This 1s a contradiction. It 1s similar to show for Q7 (x,).




Krasovskii’s Theorem

Consider the pendulum equation with friction given by

H, — -
X=X,

. g k- (12.2)

X, =—=sinx, ——x,

One has V' (x) :%(1—COSI’1)+%I§ >0 (2r<x,<27) = V'(x)= _gxg <0.

We see that 77'(x) <0 except for x, =0, where I"'(x)=0. For the system
(12.2) maintaining V'(x)=0. the trajectory must be confined to x, =0. Unless
x, =0, 1t 1s impossible from the pendulum equation with friction

(=0 = x()=0 = smx/()=0 = x,()=0.




Therefore. 77(x(#)) must decrease toward to zero and, consequently, limx(#)=0
f—w

because 7(x) 1s positive definite. This 1s consistent with the fact that, due to friction,
energy can’t remain constant while the system 1s i motion.
Remark 12.2 If no trajectories staying identically at points where J'(x)=0 are

assumed. except at the origin. the origin 1s AS 1n the case of 7(x)>0 and 7'(x)<0.

This 1s a basic 1dea of Krasovskii’s Theorem, which links to limit set.




Theorem 12.2 (Krasovskii’s Theorem) Let 7" : D — R be C'. such that
J(0)=0 and V(x)>0 mm D-{0}:
F'(x)<0 mm D.

Let S={xeR"|V'(x)=0}. If there is no solution can stay identically in §. other

than the trivial solution (origin). Then, the origin of (12.1) is AS.

Proof. By the given Lyapunov conditions, the origin is stable. We only need to show

its attraction. That 1s, lim x(#; x,)=0. If we can show that Q(x,)={0}. then we
f—+o

can get fl_lﬂo x(t:x,)=0.




First, we can find Q < B, < D such that Q 1s mvariant by Theorem 9.1.

For any x,€Q, . we have x(/;x,)cQ  forall 7>0. Therefore, Q(x,)cQ  1s

non-empty because of Lemma 12.1.

Next, we show that C(x,)={0}. By contradiction, if 3 {# >0} with 7 > =

as n—> o st lmx(7 :x;)=x"#0. By the given Lyapunov conditions, we know
n—0

that lim 7 (x(¢,:x,)) exists. Then, we have

ImV(x(t :x,)=V(x")>0. (12.3)
n—»
For x(t:x"). by the second Lyapunov condition. we have

V(x(t:x") <V (x").




If V(x(r:x"))=V(x") for all r>0. then V'(x(:x"))=0. which shows that
x(f:x")c §. for all +=0. This is a contradiction to the assumption of the theorem.
Then, 3 7>0 st F(x(r:x")<V(x"). By Lemma 12.1, x(r;x") is also a
o -limit point of x(:x,).3 {7} with 7 >» as n—>» st

limx(7,: x,)=x(r:x7).

n—0
Therefore, we have

ImV(x(7,; x,)=V(x(r:x7))<V(x7).

n—w

This also contradicts to (12.3). This contradiction shows that Q(x,) = {0} . Therefore,

lim x(#; x,)=lm x(7: x,) =0 = Imux(f:x,)=0. O
t—+m0 — t—>+mo
f—+0




Remark 12.3 Krasovskii’s Theorem suggests that there exists some links among
Lyapunov stability, invariance property and @ -limit set. This insight 1s well
developed by LaSalle. So Krasovskii’s Theorem is also called as LaSalle-Krasovskii’s
Theorem in books. The more general case of this theorem is called LaSalle’s
Invariance principle, which will be stated next class.

Theorem 12.3 (Krasovskii’s Theorem for global) Iet 7V":D-—>R be a
continuously differentiable function, such that the following Lyapunov conditions are
satisfied

7(0)=0 and 7 (x)>0 m D—{0}:
F'(x)<0 m D:
|x]|—=w = V(ix)>w.

Let S={xeR"|V'(x)=0}.If there 1s no trajectory can stay identically in S . other

than the origin. Then, the origin of (12.1) 1s GAS. Proof. (Homework).



Example 12.2 Consider the general pendulum equation

X =x,
Xy =—g(x)—h(x,)
where g(-) and h(-) are locally Lip. and satisty
2(0)=0. vg(y)>0. Yy=0. ye(—a.a):

h(0)=0, vh(y)>0. Yy=0, ye(-a.a).
If we take

x 1
V)=, gdv+-x:
on D={xeR*|-a<x ;<aj.then 7 (x) 1s positive definite in D .
Vi(x) = g(x))x, +x,[—g(x,) —h(x,)]=—x, h(x,) <0.
Then, S={xeD|V'(x)=0}. note that

7(x)=0 = x,h(x,)=0 = x,=0.since —a<x,<a,




Hence. S={xeD|x,=0}.1f x(#) belongs identically to §.Then,
(=0 = x(H=0 = gx@)=0 = x,()=0.
Therefore, the trajectory that can stay identically in S 1s only x(7)=0. Thus, the
origin 1s AS.
Example 12.3 In Example 12.2 with a == and g(-) satisfies

L:Ig(z)dz —w as |y|-owm.

The Lyapunov function
) — i 3 ’ 1 -2
V() =], gdy+x;

is radially unbounded. Similar to the previous example. it can be shown that V7 (x) <0
in R?,and

S={xeR’|V'(x)=0}={xeR’|x, =0}

contains no trajectory other than x(7) = 0. Hence, the origin 1s GAS.




Summary

e Krosovskii’s Theorem 1s a fundamental result in advanced Lyapunov theory. Any
possible extensions to time-varying systems, hybrid systems. large scales systems
etc. are still playing a key role and profound influence in system analysis. So its
development will be interested by researchers.

e Krasovskii’s Theorem uses an additional condition to treat the case of 7(x) >0

and 7'(x)<0. This type of 77(x) 1s called a non-strict Lyapunov function. Many

nonlinear systems have such a Lyapunov function. However. in controller design. a

strict Lyapunov function 1s preferred, 1e. 7(x)>0 and 7'(x)<0 . The

construction of the strict Lyapunov function based on a known non-strict Lyapunov
function plays a central role in nonlinear control. It receives recently much
attention. Especially it is for time-varying systems. The corresponding theory 1s
said “Strictification Method”. The reference book i1s “Construction of Strict
Lyapunov Functions” by Michael Malisoff and Freédéric Mazenc. Published by
Springer. in 2009. However, it 1s still lots of questions unsolved and open.



Homework

Prove Theorem 12.3
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